Lecture 35: Calculus with Parametric Curves

Let \mathcal{C} be a parametric curve described by the parametric equations $x=f(t), y=g(t)$. If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{d y}{d x}, \frac{d y}{d t}$ and $\frac{d x}{d t}$ are related by the Chain rule:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

using this we can obtain the formula to compute $\frac{d y}{d x}$ from $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

1. The value of $\frac{d y}{d x}$ gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.
2. The curve has a horizontal tangent when $\frac{d y}{d x}=0$, and has a vertical tangent when $\frac{d y}{d x}=\infty$.

The second derivative $\frac{d^{2} y}{d x^{2}}$ can be obtained as well from $\frac{d y}{d x}$ and $\frac{d x}{d t}$. Indeed,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

Notice the lack of symmetry, to find $\frac{d^{2} y}{d x^{2}}$ we divide by the derivative of $\frac{d x}{d t}$ and we do not use the derivative $\frac{d y}{d t}$.
Example 1 (a) Find an equation of the tangent to the curve

$$
x=t^{2}-2 t \quad y=t^{3}-3 t \quad \text { when } \quad t=-2
$$

(b) Find the points on the curve where the tangent is horizontal
(c) Does the curve have a vertical tangent?
(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 2 Consider the curve \mathcal{C} defined by the parametric equations

$$
x=t \cos t \quad y=t \sin t \quad-\pi \leq t \leq \pi
$$

Find the equations of both tangents to \mathcal{C} at $\left(0, \frac{\pi}{2}\right)$

Area under a curve

Recall that the area under the curve $y=F(x)$ where $a \leq x \leq b$ and $F(x)>0$ is given by

$$
\int_{a}^{b} F(x) d x
$$

If this curve can be traced by parametric equations $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$ then we can calculate the area under the curve by computing the integral:

$$
\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t \quad \text { or } \quad \int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t
$$

Example Find the area under the curve

$$
x=2 \cos t \quad y=3 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

Arc Length: Length of a curve

If a curve \mathcal{C} is given by parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where the derivatives of f and g are continuous in the interval $\alpha \leq t \leq \beta$ and \mathcal{C} is traversed exactly once as t increases from α to β, then we can compute the length of the curve with the following integral:

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example Find the arc length of the spiral defined by

$$
x=e^{t} \cos t \quad y=e^{t} \sin t \quad 0 \leq t \leq 2 \pi
$$

Example Find the arc length of the circle defined by

$$
x=\cos 2 t \quad y=\sin 2 t \quad 0 \leq t \leq 2 \pi
$$

Do you see any problems?

